Universal Methods of Design Review

Universal Methods of Design Review

Table of Contents

In today’s fast-paced world, tackling complex problems and innovating new solutions requires a diverse toolkit. “Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions” offers exactly that. Updated with 25 additional methods, this flexibound edition, released on December 3, 2019, is an essential resource for designers, researchers, and anyone passionate about turning intricate challenges into impactful outcomes. Let’s dive in and explore how this comprehensive guide can enhance our approach to creative problem-solving and design thinking. Have you ever felt overwhelmed by the complexity of designing solutions for intricate problems? We’ve all been there. That’s where “Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions Flexibound – Big Book, 3 December 2019” comes in. This book is a treasure trove of strategies and methods that can make our design process smoother and more effective.

Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions     Flexibound – Big Book, 3 December 2019

Learn more about the Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions     Flexibound – Big Book, 3 December 2019 here.

Overview of the Book

“Universal Methods of Design” is not just any book; it is an in-depth guide that can revolutionize the way we approach design. The expanded and revised edition includes 125 versatile methods that help us research complex problems, brainstorm innovative ideas, and craft effective solutions.

Why This Book Stands Out

The book stands out due to its extensive range of methods, covering everything from research to ideation to execution. Furthermore, it’s designed to be user-friendly, making it an invaluable resource for both novice and seasoned designers.

Flexibound Format

One of the first things we noticed about this book is its flexibound format. This makes it both durable and easy to handle. Whether we’re working at our desks or bringing the book along for a team meeting, it’s designed to withstand the wear and tear of daily use.

Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions Flexibound – Big Book, 3 December 2019

AED145.00
AED21.89
  Only 2 left in stock - order soon.

Detailed Breakdown of the Methods

To make our experience smoother, let’s break down the book into core sections. The book is essentially a catalog of methods sorted into logical groupings.

Below is a table outlining the types of methods covered:

Method Type Description
Ethnographic Research Methods focusing on understanding user behavior in their natural environment.
Ideation Techniques Strategies to help generate and refine innovative ideas.
Prototyping and Testing Methods for creating and refining prototypes to test functionality and usability.
Metrics and Analysis Techniques for measuring and analyzing the effectiveness of design solutions.
Usability and UX Methods specifically aimed at improving user experience and interaction.
Feedback and Iteration Approaches to gather user feedback and iteratively improve design solutions.

Ethnographic Research

Ethnographic research methods in the book help us dive deep into the world of our users. By understanding their behaviors, needs, and environments, we can create designs that truly resonate with them. Some of the methods include contextual inquiries, cultural probes, and field studies.

Ideation Techniques

This section is a goldmine for brainstorming sessions. Ideation techniques like mind mapping, brainstorming, and the SCAMPER method help us think outside the box and come up with innovative solutions. These methods are not only practical but also fun, turning every brainstorming session into an exciting exploration of ideas.

Prototyping and Testing

Creating a prototype and testing it is crucial to understanding how our design performs in the real world. The book covers various prototyping methods including low-fidelity sketches, wireframes, and interactive prototypes. Testing methods such as A/B testing and usability testing ensure that we can refine our designs based on real-world feedback.

Metrics and Analysis

How do we know if our design is successful? Metrics and analysis methods provide us with the tools to measure and evaluate our design’s performance. Methods like card sorting, heuristic evaluation, and performance analytics help us quantify the effectiveness of our designs.

Usability and UX

User experience is at the heart of any successful design. This section covers methods specifically aimed at enhancing usability and user satisfaction. Techniques such as user journey mapping, task analysis, and persona creation help us understand and cater to our users better.

Feedback and Iteration

No design is ever perfect on the first attempt. Feedback and iteration are key to refining our solutions. Methods like expert reviews, design critiques, and user feedback loops allow us to constantly improve and adapt our designs to better meet user needs.

Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions     Flexibound – Big Book, 3 December 2019

See the Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions     Flexibound – Big Book, 3 December 2019 in detail.

What We Loved About the Book

Comprehensive and Diverse Methods

The sheer variety of methods covered is impressive. There’s something in this book for every stage of the design process. We appreciate how it provides both high-level concepts and practical, actionable steps.

Easy to Navigate

With its well-organized structure, it’s easy to find exactly what we’re looking for. The methods are clearly explained and accompanied by real-world examples, making them easy to implement.

User-Friendly Design

The flexibound format and high-quality print make it a pleasure to use. The book lies flat when open, which is incredibly convenient during brainstorming sessions or while working on a project.

What Could Be Improved

Lack of Digital Resources

While the book itself is fantastic, it could benefit from accompanying digital resources. Videos, templates, or downloadable guides would add significant value.

Some Methods Are Overlapping

Given the range of methods covered, there are instances where some techniques feel quite similar. A more streamlined categorization could make it easier to distinguish between them.

Real-World Applications

Academic Use

This book is a fantastic resource for students and educators alike. It can be used to teach design principles, research methods, and problem-solving techniques. The step-by-step guides and real-world examples make it an excellent teaching tool.

Professional Designers

For those of us already working in the design field, “Universal Methods of Design” serves as a comprehensive reference guide. It’s also helpful for team workshops, client presentations, and refining our existing processes.

Entrepreneurial Ventures

Startups and entrepreneurs can leverage the methods in this book to develop innovative solutions and streamline their design processes. From product development to user testing, the book provides practical techniques that can be applied to various aspects of a startup venture.

Multidisciplinary Teams

In today’s collaborative work environments, multidisciplinary teams can use this book as a common framework. Whether we’re part of a marketing team, an engineering department, or a product design group, the methods outlined can help us speak a unified design language and work more cohesively.

Conclusion

We cannot recommend “Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions Flexibound – Big Book, 3 December 2019” enough. It’s a comprehensive, practical, and user-friendly guide that can significantly enhance our design processes. Whether we’re newcomers or seasoned professionals, this book offers valuable insights and actionable methods that can make our work more effective and innovative.

Click to view the Universal Methods of Design, Expanded and Revised: 125 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions     Flexibound – Big Book, 3 December 2019.

Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Want to keep up with our blog?

Get our most valuable tips right inside your inbox, once per month!

Related Posts

University Student Essentials
University Student Essentials

About Me

With 25 years of experience in healthcare IT implementation, Emmanuel began his career at the University of Pittsburgh Medical Center, working as an assistant manager for a billing system implementation. Over the years, he has explored various aspects of the healthcare IT domain, successfully implementing several laboratory information systems and electronic medical record (EMR) systems, such as Cerner Millennium and Epic EMR.

In 2005, Emmanuel shifted his focus to public health, working on bio-surveillance implementation for the Centers for Disease Control and Prevention (CDC). He contributed to the BioSense Data Provisioning Project and performed extensive analysis of HL7 messages in hospitals and healthcare facilities. Additionally, Emmanuel requirements analysis for the CDC BioSense Analysis, Visualization and Reporting (AVR) project and played a key role in publishing the Situational Awareness updates to the BioSense System Requirements Specification (SRS).

Over the past 11 years, Emmanuel has worked in the Middle East, implementing the Epic EMR system at Cleveland Clinic Abu Dhabi. As a multidisciplinary team member, he has taken on various roles, including SCRUM Master, Project Manager, Integration Engineer, and Platform Engineer. Concurrently working as an adjunct university faculty member, teaching graduate-level courses in Systems Life Cycle and undergraduate courses in Health Information Systems

From a technological standpoint, Emmanuel has designed, installed, and implemented complete hospital integration systems using Rhapsody Integration Engine, MS SQL Server, and Public Health Information Networks Messaging System (PHINMS). He has also developed over 10,000 interfaces some of which coded in Java and JavaScript.

In 2019, Emmanuel expanded his skill set and entered the field of digital marketing, quickly becoming a proficient Digital Marketing Strategist. He has since helped numerous clients develop robust digital marketing strategies for their businesses. His expertise encompasses Social Media Marketing, On-page and Off-page SEO, Google Ads, and Google Analytics. Additionally, he and a team have managed clients’ website development projects, ensuring that each site is optimized for SEO, further enhancing their online presence and performance.

Alongside their digital marketing expertise, Emmanuel has delved into the world of Affiliate Marketing, where Emmanuel and his team successfully managed and executed campaigns for a variety of clients. By identifying the right products and services to promote, Emmanuel and his team helped clients generate passive income streams and increase their overall revenue.

Their approach to Affiliate Marketing involves creating valuable content that educates and engages the target audience, while strategically incorporating affiliate links. Emmanuel and his team have experience working with multiple affiliate networks and platforms, ensuring optimal tracking and reporting of performance metrics. By staying up to date with the latest trends and best practices, Emmanuel and his team have been able to optimize affiliate campaigns for maximum results, fostering long-term partnerships and sustainable growth for their clients.

As an accomplished professional, Emmanuel holds dual Bachelor of Arts degrees in Linguistics and English, a Master of Science in Health Information Systems from the University of Pittsburgh, and a Ph.D. in Information Systems from Nova Southeastern University.

My Teaching History

Professor Bazile is a dedicated technology instructor and Adjunct Faculty professor, who began his teaching career in April 2000 at the Business Career Institute in Las Vegas, Nevada.

In 2001, he expanded his expertise by training nurses in the use of Electronic Medical Records (EMR) systems. His experience in both technology and healthcare led to his appointment as an Adjunct Faculty professor at the University of Phoenix in May 2008, where he has taught several graduate-level information technology and healthcare information systems courses.

Dr. Bazile has also developed an HL7 course, which he has taught at various healthcare facilities, drawing from his own book, “HL7: Introductory and Advanced Concepts,” currently available on Amazon. With a passion for teaching and a commitment to ensuring students get the most out of each course he teaches, Dr. Bazile is a valuable asset to both his students and the institutions he serves.

My Teaching Philosophy

My teaching philosophy as an Information Systems professor in healthcare is built on the concept that education should equip students to be confident and capable problem solvers who are prepared to traverse the complicated and ever-changing landscape of Healthcare IT.

In order to accomplish this, I prioritize the creation of a dynamic and engaging learning environment that encourages students to engage with course material and with one another. This involves employing a range of teaching approaches, such as lectures, seminars, and hands-on activities, to ensure that students learn in the manner that best matches their learning style.

I believe the reason we have Information Systems as a discipline is to allow students to apply technology to solve real world problems. If that is the case, both undergraduate and graduate students have to be challenged to incorporate their core academic courses with their matriculated subjects. As such, it is important that students enter their Junior and Senior years with a strong command of the core courses such as Programming, databases, networks, hardware and software, as they serve as the foundation upon which real-world solutions will be built.

I also believe in the importance of incorporating real-world examples and case studies into my courses, as this helps to connect abstract concepts to practical applications. Additionally, I encourage students to apply what they are learning to their own personal and professional goals, as this helps to make the material more meaningful and relevant to their lives.

I strive to foster a positive and supportive learning environment where all students feel comfortable asking questions and participating in class discussions. I believe that this is key to fostering a sense of community and ensuring that all students have the opportunity to succeed.

I have also taught online courses. I have found in an asynchronous learning environment it can be difficult to apply the Peer Teaching or Experiential Learning Pedagogical Approaches. However, I have found the Discovery Learning approach to works quite well. Along with a boost to students’ self-confidence, Discovery Learning in an online environment allows students to synthesize information, expand on existing concepts on their own, while experiencing a positive outcome through trial and error.

Ultimately, my mission as an educator, and a Healthcare IT Information Systems professor is to provide students with the knowledge, skills, and confidence they need to thrive and succeed in their careers and to be technological leaders. By creating a positive and supportive learning environment, incorporating real-world examples and case studies, and encouraging students to apply what they are learning to their own objectives; my hope is to inspire and empower all students to achieve their full potential.

Population Size:

A total of 310 responses were originally received. Any response containing missing data due to unclicked radio buttons or unchecked checkboxes were first reviewed, and, if justified, were omitted from analysis. For surveys with missing data, a total of 18 responses were removed. In order to address any issues with response-set, the data was downloaded into Microsoft Access and queries ran to identify responses that contained the same values for each question. A total of 16 responses were found to be qualified for removal. Another 18 were identified as outliers and removed leaving a total of 258 responses for the study analysis.

In order to assess multivariate outliers, the Mahalanobis distances were calculated and plotted against their corresponding Chi-Square distribution percentiles (Schmidt & Hunter, 2003). The resulting scatterplot is similar to a univariate normal Q-Q plot, where deviations from a straight line show evidence of non-normality. The data showed indications of moderate deviations from multivariate normality, as indicated by the concavity of the data points. There were no additional multivariate outliers or missing values in the data after the removal of 52 responses.

Descriptive Statistics

Frequencies and percentages were conducted for the demographics indicators, while means and standard deviations were calculated for the continuous indicators. For gender, there were 151 females (59%) and 107 males (41%) in the sample. For ethnicity, most participants were Caucasian (119, 46%), followed by African American (56, 22%). The two most populous education levels were Bachelor’s (90, 35%) and Master’s (62, 22%). The biggest proportion of the sample by age group was the 35-44 age group (101, 39%) followed by the 45-54 age group (59, 23%).

Analysis:

Confirmatory Factor Analysis and Composite Reliability

A CFA was conducted along with a reliability analysis to assess construct validity. Examination of modification indices and factor loadings indicated that CSE1, CSE5, CSE7, PC5, ATE1, ATE6, ATE8, PP5, and PP6 were all causing significant problems with the model parameters. The results of the last iteration of the CFA performed in R showed significantly improved fit, although still poor overall (χ2(545) = 2125.61, p < .001, CFI = 0.82, TLI = 0.81, RMSEA = 0.11). The high degrees of freedom indicate that a very large number of parameters are being estimated in this model.

Composite Reliability

For the full model, each construct had excellent reliability. The ATE latent construct had a composite reliability value of 0.89. The ORC construct had a composite reliability value of 0.94. The CSE latent construct had a composite reliability value of 0.85 and PC had a composite reliability value of 0.95. For PP and RES, the composite reliability scores were 0.80 and 0.96 respectively. These values indicate that the loadings for each construct were all directionally similar, and that the items in each construct show a high degree of consistency.

Cronbach’s Alpha

Cronbach’s alpha values were calculated for the items in each construct. The alphas for PC (α = 0.90), AXY (α = 0.94), and RES (α = 0.94) indicated excellent reliability. The alphas for CSE (α = 0.80), ATE (α = 0.88), and PP (α = 0.83) all showed good reliability. These values confirm the results of the composite reliability tests, and reiterate the high degree of reliability within each latent construct.

Partial Least Squares – Structural Equation Modeling

A partial least squares- structural equation modeling (PLS-SEM) was conducted to determine how well the data fit the proposed model, and discern whether significant relationships existed between the independent and dependent constructs. The full model showed AVE values of 0.53 for ATE, 0.69 for AXY, 0.44 for CSE, .72 for PC, .35 for PP, and 0.81 for RES. The high values for AXY, PC, and RES indicate that the amount of variance accounted for in the manifest variables is sufficiently high. The values for ATE, CSE, and PP indicate that some of the variance in the manifest variables is left unexplained.

Structural Model

Once the measurement model had been tested for model specification, the structural model was tested to determine if ATE, AXY, CSE, PC, and PP had a significant effect on RES. A path weighted model was calculated using 10,000 bootstrap samples in R. The results showed a pseudo R-squared value of 0.78. This indicates that approximately 78% of the variance in RES is explainable by the collective effects of CSE, PC, ATE, PP, and AXY.

Further examination of the effects indicated that AXY had a highly significant effect on RES (= 0.87, < .001). This indicates that a standard deviation increase in AXY increases the expected value of RES by 0.87 standard deviations. CSE did not have a significant effect on RES (= 0.02, = .423). Additionally, CSE (= 0.02, = .423), PC (= 0.05, = .334), ATE (= 0.00, = .983), and PP (= 0.03, = .407) did not have significant effects on RES. Table 11 outlines the results of the path estimates.

Correlation Analyses

Both Pearson and Spearman correlations were calculated on the composite scores. The results of the Pearson correlations indicated that CSE was significantly correlated AXY (= 0.22, < .001) and RES (= 0.21, < .001). The results also indicated that PC was significantly correlated with ATE (= -0.79, < .001), AXY (= 0.18, < .001), and RES (= 0.20, < .001). ATE was significantly correlated with AXY (= -0.19, < .001) and RES (= -0.19, < .001). AXY was significantly correlated with RES (= 0.85, < .001).

ANCOVA Analyses

An analysis of covariance (ANCOVA) was conducted to determine if a significant relationship existed between the AXY, PP, CSE, PC, ATE scores and RES controlling for Gender, Age, Ethnicity, Education, and Specialty. The overall model was found to be significant (F(63,194) = 53.39, < .001), with an R2 value of .95, indicating that 95% of the variance in RES was explained by the collective effect of the independent variables and covariates.

Since the overall model was found to be significant, the model’s covariates were assessed. The AXY (F(10,194) = 262.20, < .001), ATE (F(7,194) = 2.20, = .036), Years computers (F(1,194) = 5.71, = .018), and PC (F(12,194) = 2.00, = .026) scores were found to be significant, indicating that a significant amount of variance in RES is explained by AXY, ATE, and PC.

A path diagram depicting the results of the structural model.

Results

This research investigated Computer Self-Efficacy (CSE), Perceived Complexity (PC), Attitudes toward EMR Systems (ATE), Peer Pressure (PP), and Anxiety (AXY) to determine whether these constructs as individuals, or as a group, or coupled together with some other factors could significantly explain resistance to EMR systems. Quantitative examination of self-reported survey results was performed to understand the strength and significance of the relationships, while these relationships were investigated to test the strength of model fit.

the regression paths of the structural model were examined to test the hypotheses. Significance was determined using an alpha level of .05. The model had an overall R2 value of 0.78. This indicates that approximately 78% of the variability in RES can be accounted for by CSE, PC, ATE, PP, and AXY. Since the overall model was significant, the individual coefficients can be interpreted. Some of the hypotheses were supported by the results of this study, and some were rejected. The construction of a data model of the relationships in this study could not meet thresholds that would be evidence of a good fit of the relationships identified in the study.

The fifth hypotheses tested the influence of AXY on resistance to EMR systems. AXY was expressed to be significantly related to resistance (r=.87, p<.001). This finding supports the hypothesis that anxiety with the EMR system will lead to medical care professionals rejecting use of the system. Unlike the findings of the first four hypotheses, the findings of the current study support previous research. Angst and Agarwal (2009) indicated that AXY is a factor which is significantly related to the problem of EMR system resistance. Based on the empirical findings of previous research, the present research and conceptual propositions and conclusions in previously written scholarly articles, there is a great deal of support for the finding that AXY is significantly influenced by EMR resistance.

The findings of this research do not support all findings by previous researchers, and there are multiple relationships which had been established as being significant that were identified as being insignificant in the current research. Generally, because of the inconsistency of previous findings and the current study there may be elements related to the sample examined or other contextual factors which may contribute to the inconsistency that exists. Ultimately, it is suggested that there be further research done on the problem of resistance to EMR system use.

Ultimately the findings support a new take on the problem of EMR system resistance that may contribute to the ways in which scholars investigate the problem of EMR resistance in general. This may also help with the way practitioners approach EMR systems, and articulate value of the systems to medical professionals investing record-keeping systems in the workplace.