How to Avoid The ABD Trap Review

How to Avoid The ABD Trap Review

Table of Contents

Have you ever wondered if there’s a way to transcend the All But Dissertation (ABD) status and actually achieve that diploma? I sure did, and let me tell you, the struggle is real! That was until I stumbled upon “How to Avoid The All But Dissertation (ABD) Trap Kindle Edition.” Now, let me share all the juicy details about this life-changing guide.

Click to view the How to Avoid The All But Dissertation (ABD) Trap     Kindle Edition.

What is “How to Avoid The All But Dissertation (ABD) Trap Kindle Edition”?

This Kindle edition isn’t your average self-help book. It’s an essential guide tailored for students stuck in the ABD phase. What I love most is its straightforward approach to tackling this academic hurdle. You’ll find practical advice, motivational stories, and actionable steps that you can start implementing right away.

Why Consider This Product?

If you’re hovering in the ABD abyss, this Kindle edition might just be your lifeline. Instead of swimming in the vast sea of general advice, the book zeroes in on the specific challenges and pitfalls that ABD students face. This makes it a treasure trove of relevant information. Honestly, it felt like the author was talking directly to me, understanding my struggles and offering real solutions.

Key Features Breakdown

Here’s a quick breakdown of what you can expect from this guide:

Feature Description
Focused Content Specifically targets ABD issues, no more generic advice.
Actionable Steps Clear, step-by-step guidance to implement right away.
Motivational Stories Real stories from those who escaped the ABD trap.
Practical Exercises Activities designed to break through procrastination and writer’s block.
Expert Tips Insights from academic mentors and successful PhD graduates.

Detailed Content

Let’s dig a little deeper into what makes this Kindle edition a game-changer. I found these specific sections especially enlightening:

Understanding the ABD Trap

The book starts by explaining the ABT trap in a way that actually makes sense. It’s not just about being lazy or unmotivated; there are deeply rooted issues at play. The author does a fantastic job breaking down psychological and systemic factors that many of us never even considered.

Creating a Roadmap

One of my favorite parts is the segment on creating a roadmap. It’s more than just a plan; it’s a personalized strategy. Using the exercises and templates provided, I could actually visualize my path to completion. The book even covers time management tips and how to set achievable milestones.

Tips for Effective Roadmapping

Creating a roadmap may sound daunting, but the Kindle edition simplifies it wonderfully. Here are some tips the book suggests:

  • Set Clear Goals: Break down your dissertation into smaller tasks.
  • Timeline Planning: Allocate specific timeframes for each section.
  • Regular Reviews: Reassess your roadmap regularly to stay on track.

Dealing with Obstacles

This section is all about smashing the barriers that hold you back. Whether it’s procrastination, writer’s block, or a complete lack of motivation, the book provides targeted strategies to overcome each issue. What clicked for me was the “5-minute rule” for battling procrastination. It suggests setting a timer for just five minutes to start working on a task. More often than not, you’ll go beyond those five minutes.

Finishing the Dissertation

The Kindle edition excels in offering practical advice for completing your dissertation. It dives into the nitty-gritty details like data analysis, writing techniques, and even tips for defending your dissertation. The checklist provided in this section is a gem. I found it highly beneficial for tracking my progress and ensuring all my bases were covered.

How to Avoid The All But Dissertation (ABD) Trap     Kindle Edition

Check out the How to Avoid The All But Dissertation (ABD) Trap     Kindle Edition here.

User Experience

Easy-to-Navigate Layout

One thing that pleasantly surprised me was how easy it is to navigate this Kindle edition. With clickable sections, you can jump straight to the parts that matter most to you without any hassle. The logical flow of the chapters also made it feel like a journey rather than a disjointed set of tips.

Accessibility

Having the book on Kindle means you can carry it anywhere. Whether you’re waiting in line, commuting, or lounging at home, you have your ABD rescue guide right at your fingertips. It’s like having a mentor available 24/7.

Motivational Boost

The success stories are the cherry on top. They provide that much-needed motivational boost, reminding you that you’re not alone in this struggle. Reading about others who were in my shoes and how they overcome their challenges was very uplifting.

Conclusion

So, do I recommend “How to Avoid The All But Dissertation (ABD) Trap Kindle Edition”? Absolutely. It’s not just a book; it’s a toolkit designed to help ABD students finally cross that finish line. From practical steps to motivational insights, it covers all the bases. It’s perfect for anyone who feels stuck and needs that extra push to get their PhD completed.

In a world full of generalized advice, finding this focused, actionable guide felt like a godsend. If you’re serious about moving past the ABD status and finally getting that diploma, then this Kindle edition is your go-to resource. Trust me, you won’t regret it!

Get your own How to Avoid The All But Dissertation (ABD) Trap     Kindle Edition today.

Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Want to keep up with our blog?

Get our most valuable tips right inside your inbox, once per month!

Related Posts

About Me

With 25 years of experience in healthcare IT implementation, Emmanuel began his career at the University of Pittsburgh Medical Center, working as an assistant manager for a billing system implementation. Over the years, he has explored various aspects of the healthcare IT domain, successfully implementing several laboratory information systems and electronic medical record (EMR) systems, such as Cerner Millennium and Epic EMR.

In 2005, Emmanuel shifted his focus to public health, working on bio-surveillance implementation for the Centers for Disease Control and Prevention (CDC). He contributed to the BioSense Data Provisioning Project and performed extensive analysis of HL7 messages in hospitals and healthcare facilities. Additionally, Emmanuel requirements analysis for the CDC BioSense Analysis, Visualization and Reporting (AVR) project and played a key role in publishing the Situational Awareness updates to the BioSense System Requirements Specification (SRS).

Over the past 11 years, Emmanuel has worked in the Middle East, implementing the Epic EMR system at Cleveland Clinic Abu Dhabi. As a multidisciplinary team member, he has taken on various roles, including SCRUM Master, Project Manager, Integration Engineer, and Platform Engineer. Concurrently working as an adjunct university faculty member, teaching graduate-level courses in Systems Life Cycle and undergraduate courses in Health Information Systems

From a technological standpoint, Emmanuel has designed, installed, and implemented complete hospital integration systems using Rhapsody Integration Engine, MS SQL Server, and Public Health Information Networks Messaging System (PHINMS). He has also developed over 10,000 interfaces some of which coded in Java and JavaScript.

In 2019, Emmanuel expanded his skill set and entered the field of digital marketing, quickly becoming a proficient Digital Marketing Strategist. He has since helped numerous clients develop robust digital marketing strategies for their businesses. His expertise encompasses Social Media Marketing, On-page and Off-page SEO, Google Ads, and Google Analytics. Additionally, he and a team have managed clients’ website development projects, ensuring that each site is optimized for SEO, further enhancing their online presence and performance.

Alongside their digital marketing expertise, Emmanuel has delved into the world of Affiliate Marketing, where Emmanuel and his team successfully managed and executed campaigns for a variety of clients. By identifying the right products and services to promote, Emmanuel and his team helped clients generate passive income streams and increase their overall revenue.

Their approach to Affiliate Marketing involves creating valuable content that educates and engages the target audience, while strategically incorporating affiliate links. Emmanuel and his team have experience working with multiple affiliate networks and platforms, ensuring optimal tracking and reporting of performance metrics. By staying up to date with the latest trends and best practices, Emmanuel and his team have been able to optimize affiliate campaigns for maximum results, fostering long-term partnerships and sustainable growth for their clients.

As an accomplished professional, Emmanuel holds dual Bachelor of Arts degrees in Linguistics and English, a Master of Science in Health Information Systems from the University of Pittsburgh, and a Ph.D. in Information Systems from Nova Southeastern University.

My Teaching History

Professor Bazile is a dedicated technology instructor and Adjunct Faculty professor, who began his teaching career in April 2000 at the Business Career Institute in Las Vegas, Nevada.

In 2001, he expanded his expertise by training nurses in the use of Electronic Medical Records (EMR) systems. His experience in both technology and healthcare led to his appointment as an Adjunct Faculty professor at the University of Phoenix in May 2008, where he has taught several graduate-level information technology and healthcare information systems courses.

Dr. Bazile has also developed an HL7 course, which he has taught at various healthcare facilities, drawing from his own book, “HL7: Introductory and Advanced Concepts,” currently available on Amazon. With a passion for teaching and a commitment to ensuring students get the most out of each course he teaches, Dr. Bazile is a valuable asset to both his students and the institutions he serves.

My Teaching Philosophy

My teaching philosophy as an Information Systems professor in healthcare is built on the concept that education should equip students to be confident and capable problem solvers who are prepared to traverse the complicated and ever-changing landscape of Healthcare IT.

In order to accomplish this, I prioritize the creation of a dynamic and engaging learning environment that encourages students to engage with course material and with one another. This involves employing a range of teaching approaches, such as lectures, seminars, and hands-on activities, to ensure that students learn in the manner that best matches their learning style.

I believe the reason we have Information Systems as a discipline is to allow students to apply technology to solve real world problems. If that is the case, both undergraduate and graduate students have to be challenged to incorporate their core academic courses with their matriculated subjects. As such, it is important that students enter their Junior and Senior years with a strong command of the core courses such as Programming, databases, networks, hardware and software, as they serve as the foundation upon which real-world solutions will be built.

I also believe in the importance of incorporating real-world examples and case studies into my courses, as this helps to connect abstract concepts to practical applications. Additionally, I encourage students to apply what they are learning to their own personal and professional goals, as this helps to make the material more meaningful and relevant to their lives.

I strive to foster a positive and supportive learning environment where all students feel comfortable asking questions and participating in class discussions. I believe that this is key to fostering a sense of community and ensuring that all students have the opportunity to succeed.

I have also taught online courses. I have found in an asynchronous learning environment it can be difficult to apply the Peer Teaching or Experiential Learning Pedagogical Approaches. However, I have found the Discovery Learning approach to works quite well. Along with a boost to students’ self-confidence, Discovery Learning in an online environment allows students to synthesize information, expand on existing concepts on their own, while experiencing a positive outcome through trial and error.

Ultimately, my mission as an educator, and a Healthcare IT Information Systems professor is to provide students with the knowledge, skills, and confidence they need to thrive and succeed in their careers and to be technological leaders. By creating a positive and supportive learning environment, incorporating real-world examples and case studies, and encouraging students to apply what they are learning to their own objectives; my hope is to inspire and empower all students to achieve their full potential.

Population Size:

A total of 310 responses were originally received. Any response containing missing data due to unclicked radio buttons or unchecked checkboxes were first reviewed, and, if justified, were omitted from analysis. For surveys with missing data, a total of 18 responses were removed. In order to address any issues with response-set, the data was downloaded into Microsoft Access and queries ran to identify responses that contained the same values for each question. A total of 16 responses were found to be qualified for removal. Another 18 were identified as outliers and removed leaving a total of 258 responses for the study analysis.

In order to assess multivariate outliers, the Mahalanobis distances were calculated and plotted against their corresponding Chi-Square distribution percentiles (Schmidt & Hunter, 2003). The resulting scatterplot is similar to a univariate normal Q-Q plot, where deviations from a straight line show evidence of non-normality. The data showed indications of moderate deviations from multivariate normality, as indicated by the concavity of the data points. There were no additional multivariate outliers or missing values in the data after the removal of 52 responses.

Descriptive Statistics

Frequencies and percentages were conducted for the demographics indicators, while means and standard deviations were calculated for the continuous indicators. For gender, there were 151 females (59%) and 107 males (41%) in the sample. For ethnicity, most participants were Caucasian (119, 46%), followed by African American (56, 22%). The two most populous education levels were Bachelor’s (90, 35%) and Master’s (62, 22%). The biggest proportion of the sample by age group was the 35-44 age group (101, 39%) followed by the 45-54 age group (59, 23%).

Analysis:

Confirmatory Factor Analysis and Composite Reliability

A CFA was conducted along with a reliability analysis to assess construct validity. Examination of modification indices and factor loadings indicated that CSE1, CSE5, CSE7, PC5, ATE1, ATE6, ATE8, PP5, and PP6 were all causing significant problems with the model parameters. The results of the last iteration of the CFA performed in R showed significantly improved fit, although still poor overall (χ2(545) = 2125.61, p < .001, CFI = 0.82, TLI = 0.81, RMSEA = 0.11). The high degrees of freedom indicate that a very large number of parameters are being estimated in this model.

Composite Reliability

For the full model, each construct had excellent reliability. The ATE latent construct had a composite reliability value of 0.89. The ORC construct had a composite reliability value of 0.94. The CSE latent construct had a composite reliability value of 0.85 and PC had a composite reliability value of 0.95. For PP and RES, the composite reliability scores were 0.80 and 0.96 respectively. These values indicate that the loadings for each construct were all directionally similar, and that the items in each construct show a high degree of consistency.

Cronbach’s Alpha

Cronbach’s alpha values were calculated for the items in each construct. The alphas for PC (α = 0.90), AXY (α = 0.94), and RES (α = 0.94) indicated excellent reliability. The alphas for CSE (α = 0.80), ATE (α = 0.88), and PP (α = 0.83) all showed good reliability. These values confirm the results of the composite reliability tests, and reiterate the high degree of reliability within each latent construct.

Partial Least Squares – Structural Equation Modeling

A partial least squares- structural equation modeling (PLS-SEM) was conducted to determine how well the data fit the proposed model, and discern whether significant relationships existed between the independent and dependent constructs. The full model showed AVE values of 0.53 for ATE, 0.69 for AXY, 0.44 for CSE, .72 for PC, .35 for PP, and 0.81 for RES. The high values for AXY, PC, and RES indicate that the amount of variance accounted for in the manifest variables is sufficiently high. The values for ATE, CSE, and PP indicate that some of the variance in the manifest variables is left unexplained.

Structural Model

Once the measurement model had been tested for model specification, the structural model was tested to determine if ATE, AXY, CSE, PC, and PP had a significant effect on RES. A path weighted model was calculated using 10,000 bootstrap samples in R. The results showed a pseudo R-squared value of 0.78. This indicates that approximately 78% of the variance in RES is explainable by the collective effects of CSE, PC, ATE, PP, and AXY.

Further examination of the effects indicated that AXY had a highly significant effect on RES (= 0.87, < .001). This indicates that a standard deviation increase in AXY increases the expected value of RES by 0.87 standard deviations. CSE did not have a significant effect on RES (= 0.02, = .423). Additionally, CSE (= 0.02, = .423), PC (= 0.05, = .334), ATE (= 0.00, = .983), and PP (= 0.03, = .407) did not have significant effects on RES. Table 11 outlines the results of the path estimates.

Correlation Analyses

Both Pearson and Spearman correlations were calculated on the composite scores. The results of the Pearson correlations indicated that CSE was significantly correlated AXY (= 0.22, < .001) and RES (= 0.21, < .001). The results also indicated that PC was significantly correlated with ATE (= -0.79, < .001), AXY (= 0.18, < .001), and RES (= 0.20, < .001). ATE was significantly correlated with AXY (= -0.19, < .001) and RES (= -0.19, < .001). AXY was significantly correlated with RES (= 0.85, < .001).

ANCOVA Analyses

An analysis of covariance (ANCOVA) was conducted to determine if a significant relationship existed between the AXY, PP, CSE, PC, ATE scores and RES controlling for Gender, Age, Ethnicity, Education, and Specialty. The overall model was found to be significant (F(63,194) = 53.39, < .001), with an R2 value of .95, indicating that 95% of the variance in RES was explained by the collective effect of the independent variables and covariates.

Since the overall model was found to be significant, the model’s covariates were assessed. The AXY (F(10,194) = 262.20, < .001), ATE (F(7,194) = 2.20, = .036), Years computers (F(1,194) = 5.71, = .018), and PC (F(12,194) = 2.00, = .026) scores were found to be significant, indicating that a significant amount of variance in RES is explained by AXY, ATE, and PC.

A path diagram depicting the results of the structural model.

Results

This research investigated Computer Self-Efficacy (CSE), Perceived Complexity (PC), Attitudes toward EMR Systems (ATE), Peer Pressure (PP), and Anxiety (AXY) to determine whether these constructs as individuals, or as a group, or coupled together with some other factors could significantly explain resistance to EMR systems. Quantitative examination of self-reported survey results was performed to understand the strength and significance of the relationships, while these relationships were investigated to test the strength of model fit.

the regression paths of the structural model were examined to test the hypotheses. Significance was determined using an alpha level of .05. The model had an overall R2 value of 0.78. This indicates that approximately 78% of the variability in RES can be accounted for by CSE, PC, ATE, PP, and AXY. Since the overall model was significant, the individual coefficients can be interpreted. Some of the hypotheses were supported by the results of this study, and some were rejected. The construction of a data model of the relationships in this study could not meet thresholds that would be evidence of a good fit of the relationships identified in the study.

The fifth hypotheses tested the influence of AXY on resistance to EMR systems. AXY was expressed to be significantly related to resistance (r=.87, p<.001). This finding supports the hypothesis that anxiety with the EMR system will lead to medical care professionals rejecting use of the system. Unlike the findings of the first four hypotheses, the findings of the current study support previous research. Angst and Agarwal (2009) indicated that AXY is a factor which is significantly related to the problem of EMR system resistance. Based on the empirical findings of previous research, the present research and conceptual propositions and conclusions in previously written scholarly articles, there is a great deal of support for the finding that AXY is significantly influenced by EMR resistance.

The findings of this research do not support all findings by previous researchers, and there are multiple relationships which had been established as being significant that were identified as being insignificant in the current research. Generally, because of the inconsistency of previous findings and the current study there may be elements related to the sample examined or other contextual factors which may contribute to the inconsistency that exists. Ultimately, it is suggested that there be further research done on the problem of resistance to EMR system use.

Ultimately the findings support a new take on the problem of EMR system resistance that may contribute to the ways in which scholars investigate the problem of EMR resistance in general. This may also help with the way practitioners approach EMR systems, and articulate value of the systems to medical professionals investing record-keeping systems in the workplace.