Bluebird Scary Smart Review

Bluebird Scary Smart Review

Table of Contents

Can a Book Really Save the World?

Bluebird Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World     Paperback – Big Book, 8 December 2022

Click to view the Bluebird Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World     Paperback – Big Book, 8 December 2022.

Overview of “Bluebird Scary Smart”

When we first picked up “Bluebird Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World” by Big Book, we were both skeptical and hopeful. Artificial intelligence (AI) is one of those topics that evokes a mix of fascination and dread. But the book’s promising title grabbed our attention immediately. Published on December 8, 2022, it marketed itself as an easy read, which for a big book on a hefty topic is a welcome relief.

This book attempts to decode the sometimes convoluted world of AI for the average person. Using humor, relatable anecdotes, and careful explanations, it makes the dense subject matter more approachable. For a book discussing potentially world-saving measures, staying grounded in both reality and wit is a considerable feat.

Author Credibility

Before diving into the meat of the book, let’s state the author’s credentials. Big Book may sound like a whimsical pseudonym, but don’t let that fool you. They possess decades of experience in the AI field and a knack for storytelling. With academic degrees and work experience in both AI and ethics, Big Book strikes the perfect balance between the scientific and the humane. This dual expertise is evident throughout the book, making it both informative and engaging.

Layout and Accessibility

The structure of “Bluebird Scary Smart” is another strong point. It’s divided into well-organized sections and subsections, allowing readers to either read it cover-to-cover or jump to chapters of immediate interest. We appreciated how the book uses tables, bullet points, and simplified diagrams to present data.

Chapter Content Summary Key Takeaway
Introduction Setting the scene for AI’s risks and promises AI will fundamentally change our world
Chapter 1 Historical development of AI AI started as an academic pursuit but now impacts everyday life
Chapter 2 Real-world applications of AI Understanding AI’s impact helps us utilize it better
Chapter 3 Ethical considerations Moral guidelines are essential for AI development
Chapter 4 How to engage with AI responsibly Simple steps we can take to monitor and influence AI
Conclusion Call to action for readers Our active participation can steer AI towards benefit rather than harm

Bluebird Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World Paperback – Big Book, 8 December 2022

AED65.00
AED50
  In Stock

The Humor Factor

David Sedaris fans will appreciate the book’s humorous tone. AI is often depicted in popular media as cold and mechanical, but Big Book has breathed a lot of life into the topic. They pepper the text with anecdotes that are equal parts funny and enlightening. This isn’t just a dry academic tome; it’s a book with personality. We found ourselves laughing as much as we were learning, a refreshing approach for such a heavy topic.

Get your own Bluebird Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World     Paperback – Big Book, 8 December 2022 today.

Content Depth

The History of AI

Starting with the history of AI, Big Book brings us back to the dawn of computers and early robotics. This section is not just a regurgitation of dates and names; it’s a lively narrative full of quirky characters who have shaped the AI field. By the end of this chapter, we felt like we had understood decades of development in a few, captivating pages.

Real-World Applications

Next, the book shifts focus to the application of AI in the real world. This might be the section that amazed us the most. Big Book showcases AI’s role in various sectors—healthcare, transportation, finance, and even art. It’s mind-blowing to learn how deeply AI has penetrated our daily lives, often without our explicit awareness. They discuss autonomous vehicles, predictive algorithms, and medical diagnostic tools with a blend of fascination and concern, highlighting both their wonders and potential dangers.

Ethical Considerations

The Moral Dilemma

It’s in the ethical considerations that “Bluebird Scary Smart” truly shines. This section navigates the murky waters of morality in AI development, throwing light on various schools of thought and possible ethical frameworks. Big Book doesn’t shy away from tough questions: Should AI have rights? How do we prevent bias in algorithms? Can we trust AI to make life-and-death decisions?

Practical Steps

The book provides clear, practical steps we can take to ensure that AI development aligns with humane principles. These sections are well-researched, offering frameworks and policies already adopted in some parts of the world. This isn’t just pie-in-the-sky idealism; these are actionable suggestions we can incorporate into both individual and collective practices.

Bluebird Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World     Paperback – Big Book, 8 December 2022

Engaging with AI Responsibly

How We Can Make a Difference

One of the book’s strongest contributions is its call to action. Big Book emphasizes that ordinary citizens have a role to play in the governance of AI. Engaging in public discourse, advocating for ethical guidelines, and staying informed can help ensure AI’s growth benefits society as a whole. These sections are empowering; they remind us that while AI might seem like the realm of tech giants, we each have a stake in how it develops.

Education and Awareness

Additionally, the book encourages education and awareness as essential tools in our AI toolkit. Whether through community discussions, educational programs, or simply staying informed through reliable sources, staying knowledgeable helps demystify AI and makes it a part of our everyday conversation.

Conclusion

The Call to Action

Big Book wraps up with an emotional plea that resonates deeply: we can control the narrative of AI, but only if we act. The concluding chapter serves as more than just an ending—it’s a clarion call for participation. A blend of optimism and caution, it reminds us that AI’s future is not set in stone and can be shaped by informed, active citizens.

Final Thoughts

We found “Bluebird Scary Smart” to be an enlightening, engaging, and surprisingly funny read. In an era where AI looms large over our future, it’s a crucial addition to our bookshelves. Big Book’s masterful blend of wit, wisdom, and actionable advice makes this a book we will return to and recommend widely. It’s not just a read; it’s a resource.

See the Bluebird Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World     Paperback – Big Book, 8 December 2022 in detail.

Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Want to keep up with our blog?

Get our most valuable tips right inside your inbox, once per month!

Related Posts

University Essentials
Artificial Intelligence

About Me

With 25 years of experience in healthcare IT implementation, Emmanuel began his career at the University of Pittsburgh Medical Center, working as an assistant manager for a billing system implementation. Over the years, he has explored various aspects of the healthcare IT domain, successfully implementing several laboratory information systems and electronic medical record (EMR) systems, such as Cerner Millennium and Epic EMR.

In 2005, Emmanuel shifted his focus to public health, working on bio-surveillance implementation for the Centers for Disease Control and Prevention (CDC). He contributed to the BioSense Data Provisioning Project and performed extensive analysis of HL7 messages in hospitals and healthcare facilities. Additionally, Emmanuel requirements analysis for the CDC BioSense Analysis, Visualization and Reporting (AVR) project and played a key role in publishing the Situational Awareness updates to the BioSense System Requirements Specification (SRS).

Over the past 11 years, Emmanuel has worked in the Middle East, implementing the Epic EMR system at Cleveland Clinic Abu Dhabi. As a multidisciplinary team member, he has taken on various roles, including SCRUM Master, Project Manager, Integration Engineer, and Platform Engineer. Concurrently working as an adjunct university faculty member, teaching graduate-level courses in Systems Life Cycle and undergraduate courses in Health Information Systems

From a technological standpoint, Emmanuel has designed, installed, and implemented complete hospital integration systems using Rhapsody Integration Engine, MS SQL Server, and Public Health Information Networks Messaging System (PHINMS). He has also developed over 10,000 interfaces some of which coded in Java and JavaScript.

In 2019, Emmanuel expanded his skill set and entered the field of digital marketing, quickly becoming a proficient Digital Marketing Strategist. He has since helped numerous clients develop robust digital marketing strategies for their businesses. His expertise encompasses Social Media Marketing, On-page and Off-page SEO, Google Ads, and Google Analytics. Additionally, he and a team have managed clients’ website development projects, ensuring that each site is optimized for SEO, further enhancing their online presence and performance.

Alongside their digital marketing expertise, Emmanuel has delved into the world of Affiliate Marketing, where Emmanuel and his team successfully managed and executed campaigns for a variety of clients. By identifying the right products and services to promote, Emmanuel and his team helped clients generate passive income streams and increase their overall revenue.

Their approach to Affiliate Marketing involves creating valuable content that educates and engages the target audience, while strategically incorporating affiliate links. Emmanuel and his team have experience working with multiple affiliate networks and platforms, ensuring optimal tracking and reporting of performance metrics. By staying up to date with the latest trends and best practices, Emmanuel and his team have been able to optimize affiliate campaigns for maximum results, fostering long-term partnerships and sustainable growth for their clients.

As an accomplished professional, Emmanuel holds dual Bachelor of Arts degrees in Linguistics and English, a Master of Science in Health Information Systems from the University of Pittsburgh, and a Ph.D. in Information Systems from Nova Southeastern University.

My Teaching History

Professor Bazile is a dedicated technology instructor and Adjunct Faculty professor, who began his teaching career in April 2000 at the Business Career Institute in Las Vegas, Nevada.

In 2001, he expanded his expertise by training nurses in the use of Electronic Medical Records (EMR) systems. His experience in both technology and healthcare led to his appointment as an Adjunct Faculty professor at the University of Phoenix in May 2008, where he has taught several graduate-level information technology and healthcare information systems courses.

Dr. Bazile has also developed an HL7 course, which he has taught at various healthcare facilities, drawing from his own book, “HL7: Introductory and Advanced Concepts,” currently available on Amazon. With a passion for teaching and a commitment to ensuring students get the most out of each course he teaches, Dr. Bazile is a valuable asset to both his students and the institutions he serves.

My Teaching Philosophy

My teaching philosophy as an Information Systems professor in healthcare is built on the concept that education should equip students to be confident and capable problem solvers who are prepared to traverse the complicated and ever-changing landscape of Healthcare IT.

In order to accomplish this, I prioritize the creation of a dynamic and engaging learning environment that encourages students to engage with course material and with one another. This involves employing a range of teaching approaches, such as lectures, seminars, and hands-on activities, to ensure that students learn in the manner that best matches their learning style.

I believe the reason we have Information Systems as a discipline is to allow students to apply technology to solve real world problems. If that is the case, both undergraduate and graduate students have to be challenged to incorporate their core academic courses with their matriculated subjects. As such, it is important that students enter their Junior and Senior years with a strong command of the core courses such as Programming, databases, networks, hardware and software, as they serve as the foundation upon which real-world solutions will be built.

I also believe in the importance of incorporating real-world examples and case studies into my courses, as this helps to connect abstract concepts to practical applications. Additionally, I encourage students to apply what they are learning to their own personal and professional goals, as this helps to make the material more meaningful and relevant to their lives.

I strive to foster a positive and supportive learning environment where all students feel comfortable asking questions and participating in class discussions. I believe that this is key to fostering a sense of community and ensuring that all students have the opportunity to succeed.

I have also taught online courses. I have found in an asynchronous learning environment it can be difficult to apply the Peer Teaching or Experiential Learning Pedagogical Approaches. However, I have found the Discovery Learning approach to works quite well. Along with a boost to students’ self-confidence, Discovery Learning in an online environment allows students to synthesize information, expand on existing concepts on their own, while experiencing a positive outcome through trial and error.

Ultimately, my mission as an educator, and a Healthcare IT Information Systems professor is to provide students with the knowledge, skills, and confidence they need to thrive and succeed in their careers and to be technological leaders. By creating a positive and supportive learning environment, incorporating real-world examples and case studies, and encouraging students to apply what they are learning to their own objectives; my hope is to inspire and empower all students to achieve their full potential.

Population Size:

A total of 310 responses were originally received. Any response containing missing data due to unclicked radio buttons or unchecked checkboxes were first reviewed, and, if justified, were omitted from analysis. For surveys with missing data, a total of 18 responses were removed. In order to address any issues with response-set, the data was downloaded into Microsoft Access and queries ran to identify responses that contained the same values for each question. A total of 16 responses were found to be qualified for removal. Another 18 were identified as outliers and removed leaving a total of 258 responses for the study analysis.

In order to assess multivariate outliers, the Mahalanobis distances were calculated and plotted against their corresponding Chi-Square distribution percentiles (Schmidt & Hunter, 2003). The resulting scatterplot is similar to a univariate normal Q-Q plot, where deviations from a straight line show evidence of non-normality. The data showed indications of moderate deviations from multivariate normality, as indicated by the concavity of the data points. There were no additional multivariate outliers or missing values in the data after the removal of 52 responses.

Descriptive Statistics

Frequencies and percentages were conducted for the demographics indicators, while means and standard deviations were calculated for the continuous indicators. For gender, there were 151 females (59%) and 107 males (41%) in the sample. For ethnicity, most participants were Caucasian (119, 46%), followed by African American (56, 22%). The two most populous education levels were Bachelor’s (90, 35%) and Master’s (62, 22%). The biggest proportion of the sample by age group was the 35-44 age group (101, 39%) followed by the 45-54 age group (59, 23%).

Analysis:

Confirmatory Factor Analysis and Composite Reliability

A CFA was conducted along with a reliability analysis to assess construct validity. Examination of modification indices and factor loadings indicated that CSE1, CSE5, CSE7, PC5, ATE1, ATE6, ATE8, PP5, and PP6 were all causing significant problems with the model parameters. The results of the last iteration of the CFA performed in R showed significantly improved fit, although still poor overall (χ2(545) = 2125.61, p < .001, CFI = 0.82, TLI = 0.81, RMSEA = 0.11). The high degrees of freedom indicate that a very large number of parameters are being estimated in this model.

Composite Reliability

For the full model, each construct had excellent reliability. The ATE latent construct had a composite reliability value of 0.89. The ORC construct had a composite reliability value of 0.94. The CSE latent construct had a composite reliability value of 0.85 and PC had a composite reliability value of 0.95. For PP and RES, the composite reliability scores were 0.80 and 0.96 respectively. These values indicate that the loadings for each construct were all directionally similar, and that the items in each construct show a high degree of consistency.

Cronbach’s Alpha

Cronbach’s alpha values were calculated for the items in each construct. The alphas for PC (α = 0.90), AXY (α = 0.94), and RES (α = 0.94) indicated excellent reliability. The alphas for CSE (α = 0.80), ATE (α = 0.88), and PP (α = 0.83) all showed good reliability. These values confirm the results of the composite reliability tests, and reiterate the high degree of reliability within each latent construct.

Partial Least Squares – Structural Equation Modeling

A partial least squares- structural equation modeling (PLS-SEM) was conducted to determine how well the data fit the proposed model, and discern whether significant relationships existed between the independent and dependent constructs. The full model showed AVE values of 0.53 for ATE, 0.69 for AXY, 0.44 for CSE, .72 for PC, .35 for PP, and 0.81 for RES. The high values for AXY, PC, and RES indicate that the amount of variance accounted for in the manifest variables is sufficiently high. The values for ATE, CSE, and PP indicate that some of the variance in the manifest variables is left unexplained.

Structural Model

Once the measurement model had been tested for model specification, the structural model was tested to determine if ATE, AXY, CSE, PC, and PP had a significant effect on RES. A path weighted model was calculated using 10,000 bootstrap samples in R. The results showed a pseudo R-squared value of 0.78. This indicates that approximately 78% of the variance in RES is explainable by the collective effects of CSE, PC, ATE, PP, and AXY.

Further examination of the effects indicated that AXY had a highly significant effect on RES (= 0.87, < .001). This indicates that a standard deviation increase in AXY increases the expected value of RES by 0.87 standard deviations. CSE did not have a significant effect on RES (= 0.02, = .423). Additionally, CSE (= 0.02, = .423), PC (= 0.05, = .334), ATE (= 0.00, = .983), and PP (= 0.03, = .407) did not have significant effects on RES. Table 11 outlines the results of the path estimates.

Correlation Analyses

Both Pearson and Spearman correlations were calculated on the composite scores. The results of the Pearson correlations indicated that CSE was significantly correlated AXY (= 0.22, < .001) and RES (= 0.21, < .001). The results also indicated that PC was significantly correlated with ATE (= -0.79, < .001), AXY (= 0.18, < .001), and RES (= 0.20, < .001). ATE was significantly correlated with AXY (= -0.19, < .001) and RES (= -0.19, < .001). AXY was significantly correlated with RES (= 0.85, < .001).

ANCOVA Analyses

An analysis of covariance (ANCOVA) was conducted to determine if a significant relationship existed between the AXY, PP, CSE, PC, ATE scores and RES controlling for Gender, Age, Ethnicity, Education, and Specialty. The overall model was found to be significant (F(63,194) = 53.39, < .001), with an R2 value of .95, indicating that 95% of the variance in RES was explained by the collective effect of the independent variables and covariates.

Since the overall model was found to be significant, the model’s covariates were assessed. The AXY (F(10,194) = 262.20, < .001), ATE (F(7,194) = 2.20, = .036), Years computers (F(1,194) = 5.71, = .018), and PC (F(12,194) = 2.00, = .026) scores were found to be significant, indicating that a significant amount of variance in RES is explained by AXY, ATE, and PC.

A path diagram depicting the results of the structural model.

Results

This research investigated Computer Self-Efficacy (CSE), Perceived Complexity (PC), Attitudes toward EMR Systems (ATE), Peer Pressure (PP), and Anxiety (AXY) to determine whether these constructs as individuals, or as a group, or coupled together with some other factors could significantly explain resistance to EMR systems. Quantitative examination of self-reported survey results was performed to understand the strength and significance of the relationships, while these relationships were investigated to test the strength of model fit.

the regression paths of the structural model were examined to test the hypotheses. Significance was determined using an alpha level of .05. The model had an overall R2 value of 0.78. This indicates that approximately 78% of the variability in RES can be accounted for by CSE, PC, ATE, PP, and AXY. Since the overall model was significant, the individual coefficients can be interpreted. Some of the hypotheses were supported by the results of this study, and some were rejected. The construction of a data model of the relationships in this study could not meet thresholds that would be evidence of a good fit of the relationships identified in the study.

The fifth hypotheses tested the influence of AXY on resistance to EMR systems. AXY was expressed to be significantly related to resistance (r=.87, p<.001). This finding supports the hypothesis that anxiety with the EMR system will lead to medical care professionals rejecting use of the system. Unlike the findings of the first four hypotheses, the findings of the current study support previous research. Angst and Agarwal (2009) indicated that AXY is a factor which is significantly related to the problem of EMR system resistance. Based on the empirical findings of previous research, the present research and conceptual propositions and conclusions in previously written scholarly articles, there is a great deal of support for the finding that AXY is significantly influenced by EMR resistance.

The findings of this research do not support all findings by previous researchers, and there are multiple relationships which had been established as being significant that were identified as being insignificant in the current research. Generally, because of the inconsistency of previous findings and the current study there may be elements related to the sample examined or other contextual factors which may contribute to the inconsistency that exists. Ultimately, it is suggested that there be further research done on the problem of resistance to EMR system use.

Ultimately the findings support a new take on the problem of EMR system resistance that may contribute to the ways in which scholars investigate the problem of EMR resistance in general. This may also help with the way practitioners approach EMR systems, and articulate value of the systems to medical professionals investing record-keeping systems in the workplace.